

Department of CSE Page 1 of 9

UNIT-2

Relational Algebra and Calculus

PRELIMINARIES

In defining relational algebra and calculus, the alternative of referring to fields by position is

more convenient than referring to fields by name: Queries often involve the computation of

intermediate results, which are themselves relation instances, and if we use field names to refer

to fields, the definition of query language constructs must specify the names of fields for all

intermediate relation instances.

We present a number of sample queries using the following schema:

Sailors (sid: integer, sname: string, rating: integer, age: real)

Boats (bid: integer, bname: string, color: string)

Reserves (sid: integer, bid: integer, day: date)

The key fields are underlined, and the domain of each field is listed after the field name.

Thus sid is the key for Sailors, bid is the key for Boats, and all three fields together form the key

for Reserves. Fields in an instance of one of these relations will be referred to by name, or

positionally, using the order in which they are listed above.

RELATIONAL ALGEBRA

Relational algebra is one of the two formal query languages associated with the re-

lational model. Queries in algebra are composed using a collection of operators. A fundamental

property is that every operator in the algebra accepts (one or two) rela-tion instances as

arguments and returns a relation instance as the result.

Each relational query describes a step-by-step procedure for computing the desired

answer, based on the order in which operators are applied in the query.

Selection and Projection

Relational algebra includes operators to select rows from a relation (σ) and to project columns

(π). These operations allow us to manipulate data in a single relation. Con - sider the instance

Department of CSE Page 2 of 9

of the Sailors relation shown in Figure 4.2, denoted as S2. We can retrieve rows corresponding

to expert sailors by using the σ operator. The expression,

σrating>8(S2)

The selection operator σ specifies the tuples to retain through a selection condition. In general,
the selection condition is a boolean combination (i.e., an expression using the logical connectives

∧ and ∨) of terms that have the form attribute op constant or attribute1 op attribute2, where op is
one of the comparison operators <, <=, =, =, >=, or >.

The projection operator π allows us to extract columns from a relation; for example, we can find
out all sailor names and ratings by using π. The expression πsname,rating(S2)

Suppose that we wanted to find out only the ages of sailors. The expression

πage(S2)

a single tuple with age=35.0 appears in the result of the projection. This follows from

the definition of a relation as a set of tuples. However, our discussion of relational algebra and

calculus assumes that duplicate elimination is always done so that relations are always sets of

tuples.

Set Operations

The following standard operations on sets are also available in relational algebra: union (U),

intersection (∩), set-difference (−), and cross-product (×).

Union: R u S returns a relation instance containing all tuples that occur in either

relation instance R or relation instance S (or both). R and S must be union-compatible, and

the schema of the result is defined to be identical to the schema of R.

Intersection: R ∩ S returns a relation instance containing all tuples that occur in

both R and S. The relations R and S must be union-compatible, and the schema of the

result is defined to be identical to the schema of R.

Set-difference: R − S returns a relation instance containing all tuples that occur in R

but not in S. The relations R and S must be union-compatible, and the schema of the result

is defined to be identical to the schema of R.

Cross-product: R × S returns a relation instance whose schema contains all the fields of

R (in the same order as they appear in R) followed by all the fields of S

Department of CSE Page 3 of 9

(in the same order as they appear in S). The result of R × S contains one tuple 〈r, s〉 (the

concatenation of tuples r and s) for each pair of tuples r ∈ R, s ∈ S. The cross-product

opertion is sometimes called Cartesian product.

sid sname rating age
31 Lubbe 8 55.5
58 Rusty 10 35.0

Figure 4.9 S1 ∩ S2

sid sname rating age

22 Dustin 7 45.0

Figure 4.10 S1 − S2

The result of the cross-product S1 × R1 is shown in Figure 4.11 The fields in S1

× R1 have the same domains as the corresponding fields in R1 and S1. In Figure 4.11 sid is

listed in parentheses to

emphasize that it is not an inherited field name; only the corresponding domain is
inherited.

(sid) sname rating age (sid) bid day
22 Dustin 7 45.0 22 101 10/10/96
22 Dustin 7 45.0 58 103 11/12/96
31 Lubber 8 55.5 22 101 10/10/96
31 Lubber 8 55.5 58 103 11/12/96
58 Rusty 10 35.0 22 101 10/10/96
58 Rusty 10 35.0 58 103 11/12/96

Figure 4.11 S1 × R1

Renaming

We introduce a renaming operator ρ for this purpose. The expression ρ(R(F), E) takes an

arbitrary relational algebra expression E and returns an instance of a (new) relation called R. R

contains the same tuples as the result of E, and has the same schema as E, but some fields are

renamed. The field names in relation R are the same as in E, except for fields renamed in the

renaming list F.

For example, the expression ρ(C(1 → sid1, 5 → sid2), S1 × R1) returns a relation that contains

the tuples shown in Figure 4.11 and has the followi ng schema: C(sid1: integer, sname: string,

rating: integer, age: real, sid2: integer, bid: integer,day: dates).

Department of CSE Page 4 of 9

Department of CSE Page 5 of 9

Joins

The join operation is one of the most useful operations in relational algebra and is the most

commonly used way to combine information from two or more relations. Although a join can

be defined as a cross-product followed by selections and projections, joins arise much more

frequently in practice than plain cross-products.joins have received a lot of attention, and there

are several variants of the join operation.

Condition Joins

The most general version of the join operation accepts a join condition c and a pair of relation

instances as arguments, and returns a relation instance. The join condition is identical to a

selection condition in form. The operation is defined as follows:

R ⊲⊳c S = σc(R × S)

Thus ⊲⊳ is defined to be a cross-product followed by a selection. Note that the condition c can
(and typically does) refer to attributes of both R and S.

(sid) sname rating age (sid) bid day
22 Dustin 7 45.0 58 103 11/12/96
31 Lubber 8 55.5 58 103 11/12/96

Figure 4.12 S1 ⊲⊳S1.sid<R1.sid R1

Equijoin

A common special case of the join operation R ⊲⊳ S is when the join condition con-sists solely
of equalities (connected by ∧) of the form R.name1 = S.name2, that is, equalities between two
fields in R and S. In this case, obviously, there is some redun-dancy in retaining both attributes
in the result.

Natural Join

A further special case of the join operation R ⊲⊳ S is an equijoin in which equalities are

specified on all fields having the same name in R and S. In this case, we can simply omit the
join condition; the default is that the join condition is a collection of equalities on all common
fields.

Department of CSE Page 6 of 9

Division

The division operator is useful for expressing certain kinds of queries, for example: “Find the

names of sailors who have reserved all boats.” Understanding how to use the basic operators of

the algebra to define division is a useful exercise.

(Q1) Find the names of sailors who have reserved boat 103.

This query can be written as follows:

πsname((σbid=103Reserves) ⊲⊳Sailors)

We first compute the set of tuples in Reserves with bid = 103 and then take the natural join

of this set with Sailors. This expression can be evaluated on instances of Reserves and

Sailors. Evaluated on the instances R2 and S3, it yields a relation

(Q2) Find the names of sailors who have reserved a red boat.

πsname((σcolor=′red′ Boats) ⊲⊳ Reserves ⊲⊳ Sailors

This query involves a series of two joins. First we choose (tuples describing) red boats.

(Q3) Find the colors of boats reserved by Lubber.

πcolor((σsname=′Lubber′ Sailors) ⊲⊳ Reserves ⊲⊳ Boats)

This query is very similar to the query we used to compute sailors who reserved red boats. On

instances B1, R2, and S3, the query will return the colors green and red.

(Q4) Find the names of sailors who have reserved at least one boat.

πsname(Sailors ⊲⊳ Reserves)

(Q5) Find the names of sailors who have reserved a red or a green boat.

ρ(T empboats, (σcolor=′red′ Boats) U (σcolor=′green′ Boats))

πsname(Tempboats ⊲⊳Reserves ⊲⊳Sailors)

(Q6) Find the names of sailors who have reserved a red and a green boat

ρ(T empboats2, (σcolor=′red′ Boats) ∩ (σcolor=′green′ Boats))
πsname(Tempboats2 ⊲⊳ Reserves ⊲⊳ Sailors)

However, this solution is incorrect —it instead tries to compute sailors who have re-served a boat

that is both red and green.

ρ(T empred, πsid((σcolor=′red′ Boats) ⊲⊳ Reserves))
ρ(T empgreen, πsid((σcolor=′green′ Boats) ⊲⊳ Reserves))
πsname((Tempred ∩ Tempgreen) ⊲⊳ Sailors)

(Q7) Find the names of sailors who have reserved at least two boats.

Department of CSE Page 7 of 9

ρ(Reservations, πsid,sname,bid(Sailors ⊲⊳ Reserves))

ρ(Reservationpairs(1 → sid1, 2 → sname1, 3 → bid1, 4 → sid2,

5 → sname2,6 → bid2),Reservations × Reservations)

πsname1σ(sid1=sid2) ∩ (bid1=bid2)Reservationpairs

(Q8) Find the sids of sailors with age over 20 who have not reserved a red boat.

πsid(σage>20Sailors) −πsid((σcolor=′red′ Boats) ⊲⊳ Reserves ⊲⊳ Sailors)

This query illustrates the use of the set-difference operator. Again, we use the fact that sid is the

key for Sailors.

(Q9) Find the names of sailors who have reserved all boats.

The use of the word all (or every) is a good indication that the division operation might be
applicable:

ρ(T empsids, (πsid,bidReserves)/(πbidBoats))

πsname(Tempsids ⊲⊳ Sailors)

(Q10) Find the names of sailors who have reserved all boats called Interlake.

ρ(T empsids, (πsid,bidReserves)/(πbid(σbname=′Interlake′ Boats)))

πsname(Tempsids ⊲⊳ Sailors)

RELATIONAL CALCULUS

Relational calculus is an alternative to relational algebra. In contrast to the algebra, which is

procedural, the calculus is nonprocedural, or declarative, in that it allows us to describe the set of

answers without being explicit about how they should be computed.

Tuple Relational Calculus

A tuple variable is a variable that takes on tuples of a particular relation schema as values. That

is, every value assigned to a given tuple variable has the same number and type of fields.

(Q11) Find all sailors with a rating above 7.

{S I S E Sailors ^ S. rating > 7}
with respect to the given database instance, F
evaluates to (or simply ‘is’) true if one ofthe

following holds:

▪
F is an atomic formula R Rel, and R is assigned a tuple in the instance of relationRel.

Department of CSE Page 8 of 9

S

▪
F is a comparison R.a op S.b, R.a op constant, or constant op R.a, and the tuples

assigned to R and S have field values R.a and S.b that make the comparison true.

▪
F is of the form ¬p, and p is not true; or of the form p ^ q, and both p and q are true;

or of the form p V q, and one of them is true, or of the form p q and q is true

whenever4 p is true.

▪
F is of the form R(p(R)), and there is some assignment of tuples to the free variables

in p(R), including the variable R,5 that makes the formula p(R) true.

▪
F is of the form R(p(R)), and there is some assignment of tuples to the free

variables in p(R) that makes the formula p(R) true no matter what tuple is assigned to

R.

(Q12) Find the names and ages of sailors with a rating above 7 .

{P | Sailors(S.rating > 7 P.name = S.sname P.age = S.age)}

This query illustrates a useful convention: P is considered to be a tuple variable with exactly

two fields, which are called name and age, because these are the only fields of P that are

mentioned and P does not range over any of the relations in the query; that is, there is no

subformula of the form P Relname.

(Q13) Find the sailor name, boat id, and reservation date for each reservation

{P| R Reserves S Sailors

(R.sid = S.sid P.bid = R.bid P.day = R.day P.sname = S.sname)}

(Q1) Find the names of sailors who have reserved boat 103.

{P | Sailors Reserves(R.sid = S.sid R.bid = 103 P.sname = S.sname)} S

Department of CSE Page 9 of 9

B

B

R

B

This query can be read as follows: “Retrieve all sailor tuples for which there exists

a tuple in Reserves, having the same value in the sid field, and with bid = 103.”

(Q2) Find the names of sailors who have reserved a red boat.

{P | S Sailors R Reserves(R.sid = S.sid P.sname = S.sname

Boats(B.bid = R.bid B.color =′red′))}

This query can be read as follows: “Retrieve all sailor tuples S for which there exist tuples R in

Reserves and B in Boats such that S.sid = R.sid, R.bid = B.bid, and B.color =′red′.”

(Q7) Find the names of sailors who have reserved at least two boats. {P |

S Sailors R1 Reserves R2 Reserves (S.sid= R1.sid

 R1.sid = R2.sid R1.bid ≠ R2.bid P.sname = S.sname)}

(Q9) Find the names of sailors who have reserved all boats.

{P | S Sailors Boats

(Reserves(S.sid = R.sid R.bid = B.bid P.sname = S.sname))}

(Q14) Find sailors who have reserved all red boats.

{S | S Sailors Boats

(B.color =′red′ (R ∈ Reserves(S.sid = R.sid R.bid = B.bid)))}

Domain Relational Calculus

A domain variable is a variable that ranges over the values in the domain of some attribute (e.g.,

the variable can be assigned an integer if it appears in an attribute

whose domain is the set of integers). A DRC query has the form { 〈 x1, x2, . . . , xn 〉 |

p(〈x1,x2,.. ., xn〉)}, where each xi is either a domain variable or a constant and p(〈x1,x2,.. .,

xn〉) denotes a DRC formula whose only free variables are thevari-ables among the xi, 1 ≤ i ≤ n.

The result of this query is the set of all tuples 〈x1, x2,.. .,xn〉 for which the formula evaluates to

true.

R

